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ABSTRACT 
A quantitative model of implicit masking, with a front-end low-pass filter, a retinal local 
compressive nonlinearity described by a modified Naka-Rushton equation, a cortical representation 
of the image in the Fourier domain, and a frequency dependent compressive nonlinearity, was 
developed to simulate visual image processing.  The model algorithm was used to estimate contrast 
sensitivity functions over 7 mean illuminance levels ranging from 0.0009 to 900 trolands, and fit to 
the contrast thresholds of 43 spatial patterns in the Modelfest study. The RMS errors between model 
estimations and experimental data in the literature were about 0.1 log unit.  In addition, the same 
model was used to simulate the effects of simultaneous contrast, assimilation, and crispening. The 
model results matched the visual percepts qualitatively, showing the value of integrating the three 
diverse perceptual phenomena under a common theoretical framework.  
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1. INTRODUCTION 

A human vision model would be attractive and extremely useful if it can simulate visual spatial 
perception and performance over a broad range of conditions.  Vision models often aim at describing 
pattern detection and discrimination [1-3] or brightness perception [4, 5], but not both, due to the 
difficulty of simulating the complex behavior of the human visual system. In an effort to develop a 
general purpose vision model, the author of this paper proposed a framework of human visual image 
processing and demonstrated the capability of the model to describe visual performance such as 
grating detection and brightness perception [6]. This paper will further present a refined version of 
the visual image processing model and show more examples to investigate the usefulness of this 
approach. 

In general, three major issues must be overcome to create a successful vision model.  One 
issue is estimating the capacity of information captured by the visual system, which determines the 
degree of fine spatial structure that can be utilized by the visual system, which may be modeled by 
using a low-pass filter. The second issue, the central focus of this paper, is the modeling of nonlinear 
processes in the visual system, such as light adaptation and frequency masking. It is important to 
note that the effects of the nonlinear processes are local to each domain.  For example, light 
adaptation describes the change of visual sensitivity with a background field, the effect of which is 
limited to a small spatial area [7, 8]. Frequency masking describes the effect of a background grating 
and occurs, if it does, only when the target and background contain similar frequencies [9].  This 
space or spatial frequency domain-specific effect makes it advantageous to transform the signals to 
the relevant domains to perform particular nonlinear operations.  Moreover this transformation 
roughly mimics the transformations that are believed to occur in the human visual system. The third 
issue concerns information representation and decision making at a later stage. 

In the endeavor of applying human vision detection models to engineering applications, 
several remarkable advances have been reported. Watson [10] proposed a so-called Cortex transform 
to simulate image-encoding mechanisms in the visual system, applying frequency filters similar to  
Gabor functions (i.e., a sinusoid multiplied by a Gaussian function) in terms of localization in the 
joint space and spatial-frequency domain. Later, Watson and Solomon [3] applied Gabor filters in 
their model to describe psychophysical data that was collected to understand the effects of spatial 
frequency masking and orientation masking. Peli [11, 12] considered the loss of information in 
visual processing, and boosted particular frequency bands of Gabor filters accordingly to obtain 
specific effects of image enhancements for visual impaired viewers.  Based on the concept of the 
Cortex transform and other considerations, Daly [13] further developed a complete visual difference 
predictor to estimate visual performance for detecting the differences between two images. Lubin 
[14] also developed an impressive visual imaging model that attempts to model not only spatial, but 
also temporal aspects of human vision.  

Most of the existing pattern detection models share at least one common feature.  They 
incorporate the visual contrast sensitivity function (CSF) as a module within their models.  These 
models either apply an empirical CSF as a front-end frequency filter [3, 11], or adjust the weighting 
factors of each Gabor filter based on the CSF values [14]. Therefore, obtaining an appropriate CSF 
is a critical step for these models.  As the CSF plays such an important role in these models, it is 
worthwhile to review some CSF properties here.  

Human visual CSF:  A simple and widely used psychophysical test is the measurement of the 
contrast of sine-wave gratings that is just detectable against a uniform background. Such  contrast 
threshold is reciprocal to contrast sensitivity [15]. Contrast values are calculated by using Michelson 
formula: (Lmax-Lmin)/(Lmax+Lmin), where Lmax and Lmin are the peak and trough luminance of a 
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grating, respectively. As an example, Fig. 1 shows how the contrast threshold varies with spatial 
frequency and mean luminance, as reported by Van Nes and Bouman [16]. When the reciprocal of 
the contrast threshold value is expressed as a function of spatial frequency, the resulting function is 
referred to as the CSF. Under normal viewing conditions (i.e., photopic illumination level and slow 
temporal variations), the CSF has a band-pass shape, displaying attenuation at both low and high 
spatial frequencies [15-17]. To some extent, the CSF is similar to the MTF in optics, characterizing a 
system's response to different spatial frequencies. The behavior of the CSF is, however, much more 
complicated; it varies with the mean luminance, the temporal frequency, and the field size of the 
grating pattern.  
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Although the CSF is an important model component, it is interesting to note that none of the 
mentioned image processing models tried to explain how and why CSF behaves differently in 
different conditions. One popular explanation of the CSF shape relies on retinal lateral inhibition 
[18].  In this theory, the visual responses are determined by retinal ganglion cells, which take light 
inputs from limited retinal areas.  These areas are called receptive fields. They are circular in shape 
and each of them contains two distinct function zones: the center and surround. The inputs to the two 
zones tend to cancel each other, the so-called center-surround antagonism. Such spatial antagonism 

attenuates uniform signals, as well as low 
frequency signals. This might explain why 
the system as a whole is insensitive to low 
frequencies. However, I have not seen a 
coherent model emerging from this theory 
to offer a quantitative description of all  the 
CSF curves simultaneously . 

In the literature, there are many 
descriptive models of the CSF [19-21]. 
These models can be useful in practical 
applications, but they provide little 
mechanistic insight into why the CSF 
should behave as it does, pertinent to how 
the images are processed in the visual 
system. In addition, the CSF represents the 
responses of the entire visual system to one 
type of stimuli, that is, sinusoidal gratings, 
and therefore, they are not a component of 
a visual image-processing model, as the 
visual system is not a linear system.  The 
question becomes, can an image-
processing model be built to simulate the 
behavior of the human visual system as 
shown in Fig. 1 when sine-wave gratings 
are used as inputs to the model.   

Figure 1.  Contrast threshold versus spatial frequency, 
with mean retinal illuminance ranging from 0.0009 (top) 
to 900 (bottom) trolands in log steps.  The data points 
are from Van Nes and Bouman [21] and the smooth 
curves are the fits with current model (see below). 

Implicit Masking:  In the effort to model the CSF, Yang and Makous [22-24] suggested that the DC 
component, that is, a component at 0 cycle per degree (cpd) and 0 Hz, in any visual stimulus has all 
the masking properties of any other Fourier component. The associated effect of the DC component 
in visual detection was called implicit masking [25]. The basic assumption here is that the energy of 
the DC component can spread to its neighboring frequencies, because of spatial inhomogeneities of 
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the visual system. When a target is superimposed on a background field of similar features, the 
required stimulus strength for detection, i.e., threshold strength, is generally increased.  This is a 
nonlinear interaction.  It follows that the DC component can reduce the visibility of the targets at 
low spatial frequencies as a consequence of the energy overlap, given such nonlinear interactions.  
This concept simplifies the explanation of CSF behavior considerably, as discussed in the following.  

First, let us explore the roll-off of the CSF at the low spatial frequencies. Each of the 
frequency components spreads to a limited extent. The interaction between the target and the DC 
components should disappear when the spatial frequency of the stimulus is high enough.  In this 
case, there is no effect of implicit masking.  Therefore, the drop of contrast sensitivity because of 
implicit masking is restricted to low spatial frequencies.  

Second, this assumption offers an explanation of the effect of luminance on the contrast 
sensitivity at low spatial frequencies: as mean luminance decreases, the component at zero frequency 
decreases too.  When this happens, other factors such as noise can dominate, and thus the relative 
attenuation at low frequencies decreases.   

Third, this assumption also offers an explanation of the dependence of the attenuation on 
temporal frequency [22]. The DC component of a grating is at zero temporal frequency and zero 
spatial frequency in a 2-D spatiotemporal frequency domain, so the effects of implicit masking apply 
only to very low temporal and spatial frequencies. Test gratings that are modulated at high temporal 
frequencies would be exempt from the effect of implicit masking, no matter what the spatial 
frequency of the grating.  

Finally, the effect of field size on contrast sensitivity can be explained by the breadth of 
implicit masking. The extent of implicit masking is determined by the spread of the DC energy in 
the frequency domain. The larger the viewing field, the less the spread [26]. This explains why the 
peak sensitivity shifts to lower spatial frequency as field size increases, owing to the decreasing 
breadth of implicit masking. The exact amount of spread depends also on retinal inhomogeneities 
[26]. 

     Figure 2. A three-stage model of CSF, based on implicit masking. 

Based o  quantitative model of 
the CS

n the concept of implicit masking, Yang et al. [24] developed a
F.  As schematized in Fig. 2, the form of visual processing is partitioned into three functional 

stages. The first stage represents a low-pass filter and it includes the effects of ocular optics, 
photoreceptors, and neural summation. The second stage represents a spread of grating energy to 
nearby frequencies.  This stage represents frequency spreading caused by inhomogeneities in the 
stimulus, such as truncation of the field, and spatial inhomogeneities in the visual system, such as 
variation in the density of ganglion cells. The third stage, a nonlinear thresholding operation, is 
characterized by a nonlinear relationship between the required threshold amplitude and the 
background amplitude values. When the energy of the background field spreads to frequencies close 
to 0 cpd, the virtual masking amplitude at low frequencies increases and so does the threshold 
amplitude [24]. In this model, implicit masking is responsible for the CSF shape at low spatial 
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frequencies, and the low-pass filter determines the sensitivity roll-off at high spatial frequencies. In 
addition to the CSF shape, Fig. 1 shows that the overall contrast threshold reduces as the mean 
luminance level increases.  It was found that the inclusion of a photon-like shot noise, as indicated in 
Fig. 2, provided a satisfactory account of the overall threshold changes [24]. The absolute shot noise 
increases, but the noise contrast reduces with mean luminance following a square-root law [27, 28].  

 In a further research, Yang and Stevenson [29] noticed that the interocular luminance 
maskin

lytical form, taking parameter values, such as the frequency, the 
contras

y and Divisive Normalization:

g affects low, but not high spatial frequencies, which suggests that the change of visual 
sensitivity at high spatial frequencies is determined by retinal processes, such as light adaptation, but 
not the luminance dependent noise. 

So far the model is in an ana
t, and the luminance of the stimulus as model inputs. It cannot, however, take stimulus 

profiles or images as the inputs. Later in this paper I will show how to extend such a model to 
perform visual image processing with incorporating implicit masking and compressive nonlinear 
processes. 

Nonlinearit   Nonlinear processes in vision have often been explained 

2. IMAGE PROCESSING BASED FRAMEWORK 
The proposed model f odified compressive 

tation. 

Low-pa

by a nonlinear transducer function [30, 31]. According to such a theory, threshold is inversely 
proportional to the derivative of the transducer function at any given pedestal amplitude [2, 32, 33]. 
Heeger [34, 35] suggested that the nonlinearity of the cells in striate cortex and related 
psychophysical data may be due to a normalization process. Foley [2] suggested that such 
normalization requires inhibitory inputs to the transducer function. However, specifying excitatory 
and inhibitory interactions among different stimulus components can be complicated in general 
cases. To deal with this difficulty, I use locally pooled signals in either the space domain or the 
spatial frequency domain to replace the signal in the denominator of the Naka-Rushton equation . 
Therefore, such modified compressive nonlinearity can display some features of divisive 
normalization. 
 

ramework is based on the ideas of implicit masking, m
nonlinear process, and other well-known properties of the visual system that have been used in many 
models. The model components are schematized in Fig. 3, and are elaborated in the following 
subsections. 

Figure 3.  The schematized framework of visual image processing for pattern detection and 
brightness perception. The output of the last nonlinearity shows cortical information represen

ss Filtering: When the light modulated information of an image enters into human eyes, it 
passes through the optical lens of the eye and is captured by photoreceptors in the retina. One 
function of photoreceptors is to sample the continuous spatial variation of the image discretely.  The 
cone signals are further processed through horizontal cells, bipolar cells, amacrine cells, and 
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ganglion cells with some re-sampling. From an image processing point of view, the effects of optical 
lens, sampling, and re-sampling in the retinal mosaic are low-pass filtering. 

We estimate the front-end filter from psychophysical experiments. It has been shown that the 
visual 

LPF(f)  = Exp(-α f),        (1) 

where α  is a paramete

α = α0 + δ / L0
0.5,          (2) 

where α0 and δ are two

behavior at high spatial frequencies follows an exponential curve [36]. Yang et al. [24] 
extrapolated this relationship to low spatial frequencies to describe the whole front-end filter with an 
exponential function of spatial frequency: 
 

r specifying the rate of attenuation for a specific viewing condition. Yang and 
Stevenson [37] modified the formula to account for the variation in α  with the mean luminance of 
the image: 

 parameters and L0 the mean luminance of the image.  

Retinal Compressive Nonlinearity: In the retina, there are several major layers of cells, starting from 

t model, the adaptation pools are assumed to be constrained by ganglion cells 
with an

photoreceptors including rods and three types of cones, to horizontal cells, bipolar cells, amacrine 
cells, and finally to ganglion cells where the information is transmitted out of the retina via optic 
nerve fibers to the central brain [38]. Retinal processes include a light adaptation, where the retina 
becomes less sensitive if continuously exposed to bright light. The adaptation effects are spatially 
localized [39, 40].  

In the curren
 aperture window: 
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where rg is the standard deviation of the aperture.  The adaptation signal at the level of ganglion 
cells Ig is the convolution of the low-passed input image Ic with the window function Wg.  In this 
algorithm, the window profile is approximated as spatially invariant by considering only foveal 
vision. The retinal signal IR is the output of a compressive nonlinearity.  The form of this nonlinear 
function is assumed here to be the Naka-Rushton equation, which has been widely used in models of 
retinal light adaptation [41, 42].  One major difference here is that the adaptation signal Ig in the 
denominator is a pooled signal, which is similar to a divisive normalization process: 
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where n and I0 are parameters that represent the exponent and the semi-saturation constant of the 
Naka-Rushton equation, respectively, and w0 is a reference luminance value. In conditions where Ic 
and Ig are all equal to w0, the retinal output signal is the same as the input signal strength.  

Cortical Compressive Nonlinearity: Simple cells and complex cells in the visual striate cortex 

frequencies in x and y directions, respectively, and nx by ny is the number of image pixels.  

usually respond to stimuli of limited ranges in spatial frequency and orientation [43, 44]. To capture 
this frequency- and orientation-specific nonlinearity, one can transform the image IR from a spatial 
domain to a frequency domain representation via a Fourier transform to T(fx, fy), and divided by nx 
and ny to normalize the amplitude in the frequency domain.  Here fx and fy are the spatial 
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These cells also exhibit nonlinear properties; their firing rate does not increase until the 
stimulation strength is above a threshold level and the firing rate saturates when the stimulation 
strengt

where σ  correlates w
channels. As the ban

h is very strong [44]. In the model calculation, the signal in the frequency domain passes 
through the same type of nonlinear compressive transform as it did in the retinal processing.  
Following the concept of frequency spread in implicit masking (see Fig 2), one major step here is to 
compute the frequency spreading that affect the masking signal in the denominator of the nonlinear 
formula. In this model, the signal strength in the masking pool, Tm(fx, fy), is the convolution of the 
absolute signal amplitude |T(fx, fy)| and an exponential window function: 

Wc(fx, fy) = Exp[-(fx
2 + fy

2)0.5/σ],      (5) 

ith the extent of the frequency spreading and the bandwidth of frequency 
dwidth of frequency channels increases with the spatial frequency [1], one 

should expect that the σ  value increases with spatial frequency.  To simplify the computation, 
however, this value is approximated as a fixed value in the current algorithm. Applying the same 
form of compressive nonlinearity as in the retina, the cortical signal in the frequency domain is 
expressed as: 
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= ,      (6) 

where v and T0 are parameters that represent the e
Naka-Rushton equation for the cortical nonlinear compression, respectively. The term Tm in the 

3. MODEL FITS TO PATTERN DETECTION DATA  
As mentioned earlier, this paper 
investigate whether the on stage was added in 

performance.  One set data is the contrast thresholds reported by Van Nes and Bouman 
[16] fo

xponent and the semi-saturation constant of the 

denominator includes the energy spread of the DC component (i.e., at 0 cpd) of the spatial pattern.  
This component is processed in the same way as other frequency maskers, if there are any, under Eq. 
6.  Thus, the concept of implicit masking is naturally implemented in the image processing 
framework. In summary, the major process in the cortex is modeled by a compressive nonlinearity 
applying to the spatial frequency and orientation components. The cortical image representation in 
the frequency domain is given by the function Tc.  This function will be used to calculate visual 
responses for pattern detection and for estimating perceived brightness, as described in the following 
sections. 

 

focuses on the nonlinear parts of the visual process. In order to 
 model estimates pattern visibility reasonably, a detecti

the model to fit existing experimental data.  A simple Minkowski summation was used to estimate 
the signal strength at a decision stage, although some other approach, such as linear summation 
within spatial frequency channels [45], or signal detection theory [46, 47], may ultimately turn out 
superior. 

The following examples shows model fits to two sets of experimental data on pattern 
detection 

r detecting gratings at various mean luminance levels. The other set is from the Modelfest 
study with the contrast thresholds of 43 patterns at a mean luminance level of about 30 cd/m2 [45, 
48]. 

Pattern Detection Stage:  Based on the block diagram (Fig. 3), a visual pattern passes through a low-
pass filter, a retinal compressive nonlinearity, a frequency domain representation, and a cortical 
compressive nonlinearity to produce the cortical signal as described by Tc (see Eq. 6). In real 
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experiments, observers look for the target signal against a background field. To simulate this task in 
the computation, one can calculate the cortical visual response, Tc_t, in the spatial frequency domain 
in respect to the visual pattern, and, Tc_r, to the reference background field. The signal strength in 
the detection stage is assumed to equal to the Minkowski summation of the differences between Tc_t 
and Tc_r at every frequency components: 

R = { Δfx Δfy Σ [ (Tc_t – Tc_r)β ] }1/β,      (7) 

where Δfx and Δfy are the frequency intervals along x and y directions, respectively, and β is the 
exponent of the Mink
R is assumed to be a c

owski summation over different frequency components. The response strength 
onstant value Rt at a given threshold criterion. 

Fits to Van Nes & Bouman Data: The Van Nes and Bouman [16] paper reported the contrast 
thresholds for detecting gratings with spatial frequencies in the range of 0.5 to 46 cpd, covering 7 
mean illuminance levels in the range of 0.0009 to 900 trolands. The threshold values were measured 

inimize the root-mean-squared (RMS) error between the model estimates and the 
experim

ld, CEi the contrast threshold reported by Van Nes 
and Bouman for the i
the102 gratings.  

using a method of limits, adjusting the contrast value to make the test grating just visible or just 
disappear to the observers. The major challenge for the computational model is to duplicate the 
thresholds, which change with luminance and spatial frequency as shown in Fig. 1. There are total of 
102 data points corresponding to gratings of different spatial frequency and luminance 
combinations.  

For each grating, the response strength R is determined by Eq. 7.  The model estimated 
contrast threshold is the one that leads R being equal to a constant Rt value. Model parameters were 
optimized to m

ental data, both on a logarithmic scale: 

E = {Σ[log(Ci) - log(CEi)]2/n}1/2.         (8) 

Here Ci is the model estimated contrast thresho
th stimulus, and n is the number of data points.  The summation is over all 

In model equations 1 to 7, there are 11 system parameters: α0

e visual system. These parameter values can be estimated by optimizing the fits 
betwee

ures the trend of the threshold variation with spatial frequency 
and lum

, δ, rg, w0, n, I0, v, T0, σ, β, and 
Rt. Each of the parameters is a positive real number; and some of them convey specific physical 
meaning about th

n model predictions and experimental data. The quality of the fits was not sensitive to some 
parameter values when other parameters were optimized accordingly. These parameters, δ, rg, w0, 
and β, were thus set to 0.10 deg td ½, 0.9 min of arc, 100 cd/m2, and 2.2, respectively, based on 
reasonable pilot data fits. The other 7 parameters were optimized to minimize the residual error as 
determined by Eq. 8.  The contrast thresholds of the fits are plotted in smooth curves in Fig. 1, where 
the RMS error being 0.10 log unit.  

Although there is no band-pass filter built in the model, the model output exhibits a band-
pass behavior at high luminance levels.  This result demonstrates the role of implicit masking. 
Furthermore, the model output capt

inance nicely. 

Fits to the Modelfest Data:  The above example shows that the model is adequate to capture visual 
performance on detecting the particular patterns, i.e., sinusoidal gratings.  Now we examine how 
well this model deals with a variety of patterns. Modelfest was a collaboration between many 
laboratories to measure contrast thresholds of a broad range of patterns,  including Gabor functions 
of varying aspect ratio, Bessel and Gaussian functions, lines, edges, checkerboard, natural scene, and 
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random noise, in order to provide a database for testing human vision models [45, 48].  There were 
43 different monochromatic spatial patterns in the Modelfest test set. The field size was 2.13o x 
2.13o and mean background luminance was about 30 cd/m2.  The contrast thresholds were 
determined using two-alternative-forced-choice (2AFC) with 84% correct responses. 

The aim of developing a general purpose vision model will be one step closer if the model 
can produce contrast thresholds that are closely matched to the experimentally obtained results for 
all the stimuli, without varying the above determined model parameter values. To check this 
possibi

able to have a greater α

lity, the luminance profile of each of the 43 visual stimuli was input to the model algorithm to 
calculate their contrast thresholds, which are shown in the dotted lines in Fig. 4. As a comparison, 
the circles show the mean experimental data over 16 observers.  Clearly, the model underestimates 
the contrast thresholds in most of the cases. The model deviation in terms of RMS error is 0.22 log 
unit. Taking into the fact that the model parameters were obtained from a quite different 
experimental data set, the performance of the model is encouraging. 

Two areas were identified that could contribute to the model deviations. One is on the low-
pass filter.  The Van Nes and Bouman study used Maxwellian view with optical apparatus, while the 
Modelfest study used direct view of video displays. Thus it is reason 0 value 
in the Modelfest study than that in the Van Nes and Bouman study.  The second area is the decision 
making stage, as there were differences in the threshold measurements. This may require using 
different β and Rt values in the current model. Consequently, the solid lines in Fig. 4 show the model 
fits to the experimental data after optimizing the three parameters while the other 8 parameters were 
kept the same as in the previous case. The resulting RMS error is 0.11 log unit. The parameter value 
changed from 0.11 to 0.14 degree for α
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Figure 4.  Contrast thresholds of 43 Modelfest stimuli. The 
data points (circles) represent mean experimental results 
over 16 observers; the dotted lines represent model 

, 2.2 to 1.7 for β, and 0.36 to 0.53 for Rt. 
The RMS error is larger than those reported by Watson and Ahumada [45], however the 

current model has the advantage in dealing with diverse data sets. As discussed earlier, this model 
can describe the lum
CSFs. It can also explain brightness 
perception as  shown in the next section. 

 From Fig. 4, one can see that the 
major contribution to the RMS error comes 
from stimuli #35 (a noise pattern) and #4

ural scene), where the model 
estimates are much lower than the 
experimental data as marked by the line 
segments (see Fig. 4).  For the noise 
pattern, its spectra in the spatial frequency 
domain have random phases. Including a 
linear summation within narrow frequency 
channels can cancel some of the energies 
due to the phase differences, thus 
increasing the threshold estimate and 
potentially improving the fit. For the 
natural scene, energy cancellation can 
happen within linear channels too, due to 
the phase variations within the summation 
windows.   

 

predications with a RMS error of 0.22 log unit; and the 
solid lines represent optimal model fits with a RMS error 
of 0.11 log unit. 
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4. SIMULATING BRIGHTNESS PERCEPTION  
The cu ent model algo ntation Tc at a cortical 
level (see Eq. 6).  Th ility as shown in the 

rr rithm is designed to deliver visual information represe
is information can be used to estimate pattern visib

previous section. It is reasonable to believe that the cortical information presentation can be used to 
produce visual perception too when additional processes are included. In this section, I will show 
that the obtained cortical representation, after adding a fill-in process, can also be used to estimate 
the brightness perception of three well-know examples: simultaneous contrast, assimilation, and 
crispening. 

Local Simultaneous Contrast: It is well known that the brightness of a visual target depends not only 
on the luminance of the target, but also on the local contrast of its edges in reference to the 
luminance of adjacent areas.  Simultaneous contrast is often demonstrated by the brightness of a 
gray spot at different surrounding luminance levels (e.g., Ref. 49).  Although the luminance level of 
the gray spot is fixed, the perceived brightness of the spot increases while the surrounding luminance 
decreases.  
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sional patterns1.  In the first 
example, the visual pattern with simultaneous contrast is demonstrated in Fig. 5A. Even though both 
of the s

                                                          

 

 

 
For simplicity, the examples shown here are for one-dimen

tripes S1 and S2 have the same luminance level of about 50 cd/m2 (see the dotted lines in the 
right panel of Fig. 5 for the corresponding luminance profile), stripe S1 that is flanked by a lower 
luminance level of about 25 cd/m2 looks brighter than stripe S2 that is flanked by a higher luminance  
level of about 100 cd/m2. This has been attributed to the effect of local contrast. 

 

Figure 5. Panel A is a demonstrative pattern to show the effect of simultaneous contrast, where 
stripe S1 looks brighter than S2 while they have the same luminance, and panel B shows the 
luminance profile of the visual pattern (dotted lines), and the model simulation results of the 
brightness before (dim lines) and after (thick lines) a fill-in process.

1 note: The visual patterns in Figs. 5-7 are for the demonstrative purpose. The pattern luminance will not match the 
specified luminance profiles due to media limitation and the lack of standards to calibrate the printed or displayed 
images. Therefore, the perceived brightness by readers here may not reflect what it should be as in well controlled 
experiments . 
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In the model simulation of the perceived brightness, the luminance profile of the visual 
pattern is fed into the model algorithm as an input. Based on Eqs. 1 to 6, one can obtain the 
frequency domain representation, i.e., Tc, of the visual pattern.  By performing an inverse FFT, one 
obtains the spatial representation of the pattern as shown by the dim lines in Fig. 5B. This spatial 
response contains overshoots near the edges. For estimating the brightness of each stripe, some 
investigators have suggested a fill-in process [50, 51] or an averaging process [4].  The thick lines in 
Fig. 5B are the average values of the dotted lines within each stripe after considering such a simple 
fill-in process. As the final simulation results (thick lines) show, the visual response to the left-side 
stripe is 105 that is larger than the response of 66 to the right-side stripe, in agreement with our 
percept in terms that S1 is perceived brighter than S2. As a clarification, this paper provides only 
qualitative comparison of the model prediction to actual visual percept; no efforts have been taken to 
attain an adequate match in numbers. The unit of brightness perception from the model does not 
provide a clear meaning yet, and the scale relies on the model parameter w0, which was set to100 
cd/m2 in the current model algorithm as mentioned earlier. 
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 Figure 6. Left panel shows two patterns to demonstrate the effect of assimilation, where stripe 
S1 looks brighter than S2 while they have the same luminance value, and right panel shows the 
luminance profile of the patterns (dotted lines), and the corresponding model estimated 
brightness (thick lines) after a fill-in process. 

 
 
 
 
Long Range Assimilation:  The simultaneous contrast in the above example demonstrates the effect 
of local contrast on brightness perception. It has been shown in the literature that longer range 
interactions, other than local contrast, can also influence brightness perception as exampled by 
assimilation [52, 53].  Here, the perceived brightness is affected by the luminance level of non-
adjacent background areas.  The visual patterns on the left panel of Fig. 6 is a variant version of the 
bipartite field of Fig. 1 in Ref. 52.  In this pattern, both stripes S1 and S2 have a same luminance of 
97 cd/m2, and their adjacent flanking stripes have a same luminance of 48 cd/m2. The dotted lines of 
Fig. 6C and 6D show their luminance profiles. The percept of stripe S1 being brighter than stripe S2 
cannot be explained by local contrast as there is no difference in local contrast.  The only difference 
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between the two patterns is the luminance levels of the non-adjacent background fields, which are 25 
cd/m2 in A and 86 cd/m2 in B. Such longer range effect was attributed to assimilation [52].  

The model calculation follows the same way as described in the preceding example. Each of 
the luminance profiles of the patterns is fed into the model as an input to calculate its cortical 
representation. The simulated brightness following the fill-in process for pattern A is shown as the 
thick lines in Fig. 6C where stripe S1 has a value of 141, and that for pattern B is shown as the thick 
lines in Fig. 6D where stripe S2 has a value of 124.  Therefore, the model predicts that stripe S1 is 
perceived brighter than stripe S2 by 17 units, which is consistent with our percepts in terms that 
stripe S1 is likely perceived brighter than S2.  
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 Figure 7.  Stripes S1 and S2 have the same luminance of 57 cd/m2; stripes T1 and T2 have the 
same luminance of 48 cd/m2; and the background luminance is 17 cd/m2 for pattern A and 54 
cd/m2 for pattern B. Model predicted brightness for stripes S1 and T1 are 123 and 112 (thick lines 
of panel C), with a difference of 11 units, and the predicted brightness for stripes S2 and T2 are 96 
and 82 (thick lines of panel D), with a difference of 14 units. 

 
 
 
 
 
Crispening Effect:  Let’s consider one more example here. It has been shown that the perceived 
brightness of a spot changes more rapidly with the luminance of the spot when its luminance is 
closer to the surrounding luminance [54].  Such crispening can also be demonstrated by seeing the 
effect of background luminance on the brightness difference of two spots (e.g., see Ref. 55).  The 
perceived difference is the largest when the background luminance value is somewhere between the 
luminance values of the two spots. As illustrated in Fig. 7, the brightness difference between stripes 
S1 and T1 is barely detectable, while the difference between stripes S2 and T2 is easier to see, 
although S1 and S2 have the same luminance of 57 cd/m2

, and T1 and T2 have the same luminance of 48 
cd/m2. The dotted lines in Fig. 7C represent the luminance profile of Fig. 7A and the dotted lines of 
Fig. 7D represent the profile of Fig. 7B.   

In the same way as in previous two examples, the luminance profile of each pattern is 
entered into the model algorithm to calculate its cortical representation, and then through a fill-in 
process.  The thick lines of Fig. 7C represent the model predicted brightness for seeing pattern A, 
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and the thick lines of Fig. 7D represent the brightness for seeing pattern B. For a comparison, the 
model estimated brightness difference between S1 and T1, which is 11 units, is less than the 
difference between S2 and T2, which is 14 units. Thus, the model outputs are qualitatively consistent 
with the perceived brightness differences.   

The three examples show that the current model can describe both the effects of local 
contrast and assimilation under a common theoretical framework.  As a same algorithm and a same 
set of parameter values were used in each case, it is an encouraging evidence of showing the 
generality of the developed human vision model. 

 
5. SUMMARY 

Differing from most existing vision models, the current approach does not use CSF as the front-end 
filter in modeling visual image processing.  Instead, the model simulates the CSF behavior at 
varying mean luminance by implementing implicit masking, using very basic components of visual 
image processing. They include a front-end low-pass filter, a nonlinear compressive process in the 
retina performed in the spatial domain, and a nonlinear compressive process in the Cortex performed 
in the frequency domain.   

After including Minkowski summation in the decision stage, this model can describe the 
contrast thresholds obtained in two prominent and very different studies, namely the luminance 
dependent CSFs [16] and the Modelfest data [45, 48]. The residual RMS errors between the model 
and experimental data were about 0.1 log unit. It also suggests that further model improvement 
could be reached by applying more appropriate decision making roles such as adding linear 
frequency channels.  

The same model can be used to identify the direction of visual illusion with respect to the 
change of perceived brightness in simultaneous contrast, assimilation, and crispening effect. While 
reports in the literature have shown that brightness perception can be simulated using the local-
energy model of feature detection [56, 57 ], frequency channels [5, 58, 59], or natural scene statistics 
[60], the current approach relies on compressive nonlinear processes at both retina and visual cortex. 
Both Blakeslee et al. [59] and Dakin and Bex [60] use a frequency weight that increases with spatial 
frequency, in a way attenuating low frequency components. Similarly, the current model applies a 
concept of implicit masking to attenuate low frequency. The major differences here are that the 
amount of attenuation depends on the mean luminance level, and that frequency masking and 
spatially localized adaptation are included.  It remains to see how  important it is to apply these 
treatments in future studies.  It is, nevertheless, encouraging to see the generality of the developed 
model, which integrates the three diverse perceptual phenomena under a common theoretical 
framework, in addition to its capability of estimating pattern visibility in a variety of conditions. In 
further studies, we need to concentrate on quantitative matches between the model predictions and 
experimental data on brightness perception.    
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